86 research outputs found

    Theoretical basis for at-many-stations hydraulic geometry

    Get PDF
    Citation: Gleason, C. J., & Wang, J.(2015). Theoretical basis for at-many-stations hydraulic geometry. Geophysical Research Letters, 42(17), 7107-7114. doi:10.1002/2015gl064935At-many-stations hydraulic geometry (AMHG) is a recently discovered set of geomorphic relationships showing that the empirical parameters of at-a-station hydraulic geometry (AHG) are functionally related along a river. This empirical conclusion seemingly refutes previous decades of research defining AHG as spatially independent and site specific. Furthermore, AMHG was the centerpiece of an unprecedented recent methodology that successfully estimated river discharge solely from satellite imagery. Despite these important implications, AMHG has remained an empirical phenomenon without theoretical explanation. Here we provide the mathematical basis for AMHG, showing that it arises when independent AHG curves within a reach intersect near the same values of discharge and width, depth, or velocity. The strength of observed AMHG is determined by the degree of this convergence. Finally, we show that AMHG enables discharge estimation by defining a set of possible estimated discharges that often match true discharges and propose its future interpretation as a fluvial index

    A novel high-strength large vibrating screen with duplex statically indeterminate mesh beam structure

    Get PDF
    Screening is an indispensable unit process for separation of materials. Large vibrating screen is extensively used in coal processing because of its large production capacity. In this study, a novel large vibrating screen with duplex statically indeterminate mesh beam structure (VSDSIMBS) was presented. The dynamic model of VSDSIMBS was proposed, and characteristic parameters were obtained by theoretical calculations. In order to obtain more reliable and believable research results, model of a traditional vibrating screen (TVS) with the same mass was also established for comparisons with VSDSIMBS. The finite element (FE) method was applied to study the performance of VSDSIMBS and FE analysis of VSDSIMBS and TVS was completed by using characteristic parameters. Modal analysis results indicated that VSDSIMBS could avoid the resonance and run more smoothly than TVS. Furthermore, harmonic response analysis results showed that VSDSIMBS could improve the entire stress distribution, reduce high stress areas, and increase the strength of vibrating screen. With DSIMBS, the maximum stress of vibrating screen decreased from 130.53 to 64.54 MPa. The full-scale experimental tests were performed to validate the credibility and accuracy of FE analysis results. The stress and displacements of VSDSIMBS were measured under working conditions. The test results obtained are in good agreement with simulation results, and accord with conclusions made from FE analysis

    Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium

    Get PDF
    Citation: Yao, F., Wang, J., Yang, K., Wang, C., Walter, B. A., & CrĂ©taux, J.-F. (2018). Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environmental Research Letters, 13(6), 064011. https://doi.org/10.1088/1748-9326/aab5d3Alpine lakes in the interior of Tibet, the endorheic Changtang Plateau (CP), serve as ‘sentinels’ of regional climate change. Recent studies indicated that accelerated climate change has driven a widespread area expansion in lakes across the CP, but comprehensive and accurate quantiïŹcations of their storage changes are hitherto rare. This study integrated optical imagery and digital elevation models to uncover the ïŹne spatial details of lake water storage (LWS) changes across the CP at an annual timescale after the new millennium (from 2002–2015). Validated by hypsometric information based on long-term altimetry measurements, our estimated LWS variations outperform some existing studies with reduced estimation biases and improved spatiotemporal coverages. The net LWS increased at an average rate of 7.34 ± 0.62 Gt yr−1 (cumulatively 95.42 ± 8.06 Gt), manifested as a dramatic monotonic increase of 9.05 ± 0.65 Gt yr−1 before 2012, a deceleration and pause in 2013–2014, and then an intriguing decline after 2014. Observations from the Gravity Recovery and Climate Experiment satellites reveal that the LWS pattern is in remarkable agreement with that of regional mass changes: a net effect of precipitation minus evapotranspiration (P-ET) in endorheic basins. Despite some regional variations, P-ET explains ∌70% of the net LWS gain from 2002–2012 and the entire LWS loss after 2013. These ïŹndings clearly suggest that the water budget from net precipitation (i.e. P-ET) dominates those of glacier melt and permafrost degradation, and thus acts as the primary contributor to recent lake area/volume variations in endorheic Tibet. The produced lake areas and volume change dataset is freely available through PANAGEA (https://doi.pangaea.de/ 10.1594/PANGAEA.888706)

    Global Dam Watch: curated data and tools for management and decision making

    Get PDF
    Dams, reservoirs, and other water management infrastructure provide benefits, but can also have negative impacts. Dam construction and removal affects progress toward the UN sustainable development goals at local to global scales. Yet, globally-consistent information on the location and characteristics of these structures are lacking, with information often highly localised, fragmented, or inaccessible. A freely available, curated, consistent, and regularly updated global database of existing dams and other instream infrastructure is needed along with open access tools to support research, decision-making and management needs. Here we introduce the Global Dam Watch (GDW) initiative (www.globaldamwatch.org ) whose objectives are: (a) advancing recent efforts to develop a single, globally consistent dam and instream barrier data product for global-scale analyses (the GDW database); (b) bringing together the increasingly numerous global, regional and local dam and instream barrier datasets in a directory of databases (the GDW directory); (c) building tools for the visualisation of dam and instream barrier data and for analyses in support of policy and decision making (the GDW knowledge-base) and (d) advancing earth observation and geographical information system techniques to map a wider range of instream structures and their properties. Our focus is on all types of anthropogenic instream barriers, though we have started by prioritizing major reservoir dams and run-of-river barriers, for which more information is available. Our goal is to facilitate national-scale, basin-scale and global-scale mapping, analyses and understanding of all instream barriers, their impacts and their role in sustainable development through the provision of publicly accessible information and tools. We invite input and partnerships across sectors to strengthen GDW’s utility and relevance for all, help define database content and knowledge-base tools, and generally expand the reach of GDW as a global hub of impartial academic expertise and policy information regarding dams and other instream barriers

    A Hybrid of Optical Remote Sensing and Hydrological Modelling Improves Water Balance Estimation

    Get PDF
    Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modelling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modelled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a one-to two-month wet season lag and a negative baseflow bias. Accounting for this two-month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modelling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Scenario set-up and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Model Intercomparison Project (ISIMIP3a)

    Get PDF
    This paper describes the rationale and the protocol of the first component of the third simulation round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a, www.isimip.org) and the associated set of climate-related and direct human forcing data (CRF and DHF, respectively). The observation-based climate-related forcings for the first time include high-resolution observational climate forcings derived by orographic downscaling, monthly to hourly coastal water levels, and wind fields associated with historical tropical cyclones. The DHFs include land use patterns, population densities, information about water and agricultural management, and fishing intensities. The ISIMIP3a impact model simulations driven by these observation-based climate-related and direct human forcings are designed to test to what degree the impact models can explain observed changes in natural and human systems. In a second set of ISIMIP3a experiments the participating impact models are forced by the same DHFs but a counterfactual set of atmospheric forcings and coastal water levels where observed trends have been removed. These experiments are designed to allow for the attribution of observed changes in natural, human and managed systems to climate change, rising CH4 and CO2 concentrations, and sea level rise according to the definition of the Working Group II contribution to the IPCC AR6
    • 

    corecore